Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes
نویسندگان
چکیده
To study an endocytotic role of the GTP-binding protein RhoA in Xenopus oocytes, we have monitored changes in the surface expression of sodium pumps, the surface area of the oocyte and the uptake of the fluid-phase marker inulin. Xenopus oocytes possess intracellular sodium pumps that are continuously exchanged for surface sodium pumps by constitutive endo- and exocytosis. Injection of Clostridium botulinum C3 exoenzyme, which inactivates Rho by ADP-ribosylation, induced a redistribution of virtually all intracellular sodium pumps to the plasma membrane and increased the surface area of the oocytes. The identical effects were caused by injection of ADP-ribosylated recombinant RhoA into oocytes. The C3 exoenzyme acts by blocking constitutive endocytosis in oocytes, as determined using a mAb to the beta 1 subunit of the mouse sodium pump as a reporter molecule and oocytes expressing heterologous sodium pumps. In contrast, an increase in endocytosis and a decrease in the surface area was induced by injection of recombinant Val14-RhoA protein or Val14-rhoA cRNA. PMA stimulated sodium pump endocytosis, an effect that was blocked by a specific inhibitor of protein kinase C (Gö 16) or by ADP-ribosylation of Rho by C3. Similarly, the phorbol ester-induced increase in fluid-phase endocytosis in oocytes was inhibited by Gö 16, C3 transferase, or by injection of ADP-ribosylated RhoA. In contrast to C3 transferase, C. botulinum C2 transferase, which ADP-ribosylates actin, had no effect on sodium pump endocytosis or PMA-stimulated fluid-phase endocytosis. The data suggests that RhoA is an essential component of a presumably clathrin-independent endocytic pathway in Xenopus oocytes which can be regulated by protein kinase C.
منابع مشابه
The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملProbing the action of Clostridium difficile toxin B in Xenopus laevis oocytes.
Clostridium difficile toxin B and Clostridium botulinum C3 exoenzyme caused comparable morphological alteration of CHO cells, which was accompanied by disaggregation of the microfilamental cytoskeleton. The cytotoxic effect of toxin B was correlated with a decrease in C3-catalyzed ADP-ribosylation of the low-molecular-mass GTP-binding protein Rho, which is involved in the regulation of the acti...
متن کاملThe role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins.
The roles of calmodulin-binding sites in the regulation by Ca2+, inositol 1,4,5-trisphosphate (InsP3) and GTP-binding regulatory proteins (G-proteins) of the Drosophila melanogaster TRPL (transient-receptor-potential-like) non-specific Ca2+ channel were investigated. Wild-type TRPL protein and two mutant forms, TRPL (W713G) and TRPL (W814G), in which a key tryptophan residue in each of the two ...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 130 شماره
صفحات -
تاریخ انتشار 1995